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It is shown that the approximation of a thin thermal boundary layer gives an accurate 
description of the growth of spherical vapour bubbles in a superheated liquid except 
for very small superheats. If the further approximations of a linear variation of 
vapour pressure with temperature and of constant physical properties are made, then 
scaled variables can be introduced which describe the growth under any conditions. 
This scaled description is not valid during the early, surface-tension dominated, 
portion of the growth. The rate of bubble growth for large superheats is somewhat over- 
estimated in the intermediate stage in which both inertial and thermal effects play 
a role. This overestimate does not lead to a serious error in the radius-time behaviour 
for ranges of practical interest. The asymptotic, or thermally controlled, stage of 
growth is accurately described by the scaled formulation. 

1. Introduction 
The theory of the growth of a vapour bubble in a superheated liquid has been 

considered by several authors (Plesset & Zwick 1954, 1955; Birkhoff, Margulies & 
Horning 1958; Scriven 1959; Zwick 1960; Bankoff 1964; Theofanous et al. 1969; 
Mikic, Rohsenow & Griffith 1970; Dalle Donne & Ferranti 1975; Theofanous & Pate1 
1976) in part at least because of theoretical implications for boiling heat transfer (see, 
for example, Rohsenow 1971) and for other problems in two-phase flows. Even with 
the simplifying assumption of spherical symmetry the formulation and solution of the 
problem are somewhat complex, and attempts have been made to obtain some ana- 
lytical expressions of relatively simple form. These approximations, however, are 
either limited in their range of applicability to the late stages of bubble growth 
(Plesset & Zwick 1954; Birkhoff et al. 1958; Scriven 1959) or do not have a stronger 
theoretical foundation than that of being ad hoe interpolations between the correct 
limiting solutions for large and small times (Mikic et al. 1970). 

The primary objective of the present study is to present a law of bubble growth 
which has a clear physical basis and which, although somewhat simplified, retains 
a large degree of accuracy and applicability in the range of bubble radii of practical 
interest. While it has not been possible to obtain a general solution in closed analytical 
form, it will be shown that, with appropriate scaling, bubble growth can be described 
under general conditions of liquid superheat and liquid properties by a single equation 
that does not contain any parameter. This ‘universal’ law of growth is valid only for 
bubbles that have grown by about an order of magnitude beyond their initial radius,, 
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so that surface-tension effects have become unimportant. This limitation is inconse- 
quential in practice, particularly for moderate and large liquid superheats. 

Our approach is based on the theory developed by Plesset & Zwick (1954), who 
gave an approximate solution to the energy equat.ion (Plesset & Zwick 1952). A 
secondary objective of the present study is to show that this theory gives quite good 
results unless the liquid superheat is very small. Its accuracy is demonstrated by the 
close agreement with the results of Dalle Donne & Ferranti (1975), who solved by 
detailed numerical integration the complete set of partial and ordinary differential 
equations for the growth problem. The approximate formulation that leads to the 
description in terms of scaled variables is also shown to be in agreement with the results 
of Dalle Donne & Ferranti (1975) in the range of bubble radii of concern in practice. 

The interpolation expression obtained by Mikic et al. (1970) is also considered here. 
With the modification suggested by Theofanous & Pate1 ( 1 9 7 ~  the scaled variables 
of Mikic et al. coincide with ours, and their interpolation scheme is found to give 
acceptable results. 

2. The analytical model 
The nucleus from which the vapour bubble will eventually grow is supposed to be 

a spherical cavity of radius R, in a liquid a t  the uniform temperature T,. The internal 
pressure in the nucleus will be taken to be the equilibrium vapour pressure pJT,), 
for the liquid temperature, and the equilibrium radius is then 

Ro = 2G/bu(Tm) - ~ r n I ,  (1)  

where u is the surface t,ension at the temperature T, and p ,  denotes the ambient 
liquid pressure, which is supposed to be constant. The pressure p m  corresponds to 
a well-defined equilibrium temperature, the 'boiling' temperature Tb. Equation (1) 
implies that T, > T,, and the difference AT = T, - is termed the liquid superheat. 
This simple model for the vapour nucleus is certainly idealized, but it may be shown 
that initial conditions do not have a significant effect on the-subsequent - growth of 
a bubble (see, for example, figure 11 below). 

The equilibrium described by ( 1 )  is unstable, and a perturbation can result in the 
growth of the nucleus. I n  the initial, or latent, stage the radial velocity of growth is 
limited by the restraining effect of surface tension, which becomes of decreasing 
importance with increasing bubble radius. If the initial superheat is sufficiently large, 
the limiting factor in the following stage of growth will be the liquid inertia. An upper 
bound for the growth velocity will then be given by 

where R is the bubble radius and p is the liquid density. The increase in bubble volume 
requires a corresponding inflow of thermal energy in order that the volume remains 
filled with vapour. The rate of inflow of energy to meet the latent-heat requirement is 
clearly proportional to RzdR/dt, so that the inertial growth stage will be followed by an 
intermediate stage in which both inertial and thermal effects control the growth. 
Finally, in the asymptotic stage for large radius, the only important controlling factor 
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will be the inflow of thermal energy. I n  this stage, the familiar expression for the 
growth velocity applies: 

in which k is the liquid thermal conductivity, L is the latent heat, pv(Tb) is the equili- 
brium vapour density a t  the boiling temperature, and D is the thermal diffusivity 
of t,he liquid. This equation expresses the balance between the rate of heat flow in the 
liquid to  the bubble wall, given approximately by 4nR2kAT/(Dt)4, and the latent heat 
required to  supply the vapour in the bubble at the temperature 3, which is of the order 
of 4nB2Lp,(dB/dt) (Plesset & Zwick 1954; Plesset & Prosperetti 1977). 

The detailed results which follow will show that the growth stages just described 
apply only for sufficiently large liquid superheats. For smaller superheats, the inertial 
stage may never be reached, the latent stage passing directly into the intermediate 
stage; a t  still smaller superheats, the latent stage will be followed directly by the 
asymptotic stage. At the other extreme of very large initial superheats, the inter- 
mediate or the asymptotic stage would be reached only for bubble radii so large as 
to  be of no practical significance. This behaviour is, for example, characteristic of 
cavitation bubbles. 

We may note that integration of (3) gives 

which is a frequently used result. It must be emphasized that it is valid only for times 
large enough for the growth velocity to be much smaller than the inertia-controlled 
velocity. This behaviour will be discussed further below. 

With the assumption of spherical symmetry, the continuity and momentum equa- 
tions for an  incompressible liquid give the Rayleigh equation (see, for example, 
Plesset & Prosperetti 1977) 

R 
d2R 3 dR 2 

dt2 2 ( d t  ) :( R - + -  - = -  (5) 

The liquid temperature a t  the bubble surface is T, ( t ) ,  and it is assumed that the vapour 
in the bubble has uniform density and pressure and is in thermodynamic equilibrium 
at the temperature T,. Non-equilibrium effects can be shown to be small if the 
accommodation coefficient is not appreciably less than unity. An additional assump- 
tion contained in (5) is that viscous effects may be neglected. Viscous effects could be 
accounted for by including the term - 4(v/R) (dR/dt) in the right-hand side of (5). For 
the liquids of present concern, such as water or liquid sodium, the kinematic viscosity v 
is so small that  viscous effects are negligible. 

The liquid temperature T, a t  the bubble boundary must be obtained from the 
solution of the energy equation, which here takes the form 

where r is the radial distance measured from the centre of the bubble and T = T(r,  t ) .  
Clearly 

(7) 
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We should note that the form of the energy equation in (6) implies the neglect of 
the temperature dependence of the thermal conductivity of the liquid but not of the 
temperature dependence of its density or of its specific heat. 

At the moving boundary r = R(t),  the temperature field is subject to the condition 

d 
47rRzk (g) = Ldt [&rR3p,(Ts)], 

r=RW 

which expresses the requirement that the energy conducted from the liquid into the 
bubble equals the product of the latent heat L and the rate of vapour production. 
Further conditions on the temperature field are 

3. The thermal problem 
A solution of the heat-flow equation (6) with conditions (9) and with arbitrary time- 

varying heat flux at  the bubble surface may be obtained subject to suit,able approxima- 
tions. This result, which was obtained by Plesset & Zwick (1952) ,  greatly simplifies the 
solution of the growth problem. This solution is summarized here with the dual purpose 
of completeness of the present discussion and of clarifying the range of validity of the 
approximations introduced. There has been some confusion in the literature regarding 
the latter point. 

The heat-flow equation (6) is complicated by the presence of the convective term 
on the left-hand side. This term can be formally eliminated by introduction of a 
Lagrangian independent variable 

in terms of which (6) becomes 
h = Q(r3 - R3), (10) 

It is also convenient to introduce a transformed time variable u defined as 

and a new dependent variable U given by 

r’2[T, - T(r‘, t ) ]  dr‘ = [T, - T(h’, t ) ]  dh’ 

For constant liquid density and specific heat, U is proportional to the thermal energy 
removed from the liquid exterior to the sphere of radius r by the latent-heat require- 
ment of the vapour bubble. If ( 1  1) is integrated from h to infinity, one obtains for 
constant D 

and conditions (9) become 
U(h, 0) = 0,  
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Let us now suppose that the temperature gradient is appreciable only in a thermal 
boundary layer about the bubble of thickness 6 2: (Dt)&. Then, with neglect of terms 
of second and higher order in SIR, one may write 

h r - R r 2 + r R + R 2  6 
R3 R 3R2 R' 

An estimate of the magnitude of 6/R may be obtained by use of ( 4 ) ,  and with the 
neglect of unimportant numerical factors one finds 

-=- < -  

where c is the specific heat of the liquid. The reciprocal of the right-hand side of (15)  is 
often referred to as the Jakob number (Zuber 1961) and it should be noted that it is 
independent of the thermal conductivity k of the liquid. By way of example, for water 
at 100 "C one has 6 / R  N 0*38/AT and for sodium at 890 "C one has 6/R 2: 2.9/AT.  It is 
evident that even for modest superheats one may make the approximation that 
h/R3 < 1. Equation (13)  then becomes to lowest order 

D a2U/ah2 = aU/au, (16)  

which is the standard form of the diffusion equation. The general solution of (16)  which 
satisfies the conditions (14)  and which has a2U/ah2 given a t  h = 0 as an arbitrary 
function of time is readily found by Laplace transform methods (see Plesset & Zwick 
1952). When the solution is written in the original variables, we have 

where aT(R(t) ,  t)/ar is the arbitrarily prescribed gradient a t  the bubble wall. We may 
note that for constant R this expression reduces to the well-known result for a plane 
interface 

For the bubble growth problem, the boundary condition (8) should be used in (17) 
to  give 

To be consistent with the assumptions already made, k and D should be taken to be 
independent of temperature, but no such assumption has been made thus far for L and 
pw. I n  order to ensure a correct description of the asymptotic stage, k and D should 
be evaluated a t  the boiling temperature Tb. 

The method followed to deduce (17)  is essentially that of matched asymptotic 
expansions with (16) representing the lowest-order inner equation and the correspond- 
ing outer solution to lowest order being U(h, t )  = 0. Plesset & Zwick (1952) have also 
considered first-order terms and give an explicit expression for the correction to (17). 

A further remark may be made concerning the estimate of the quantity 6/R. As 
already pointed out, at sufficiently high liquid superheats, the initial growth has 
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approximately the constant inertial velocity given by (2). The rate of change of the 
thermal boundary layer for early times has large values which are proportional to t-4. 
It is therefore pertinent to inquire whether IS < R at the initiation of the intermediate 
stage when thermal effects begin to be important. This stage begins approximately a t  
the time to at which the inertial growth velocity (2) and the thermal growth velocity (3) 
are roughly equal. We have therefore 

and, since at to we have (dR/dt)i,ertial = (dR/dt)thermal, 

a<&! L 
R ( t o )  PI c(Tm - Tb) ’ 

which agrees with our previous estimate (15). 

4. The growth analysis 
The dynamical equation ( 5 )  and the solution to the energy equation (1 9) are coupled 

by the thermodynamic equilibrium relation pu  = p,(T,), so that the solution to the 
growth problem is determined subject to the simplifications which have been intro- 
duced. A way of assessing the consequences of these approximations is to compare the 
results obtained in this way with results derived on the basis of a more accurate 
model. Such a study has recently been performed by Dalle Donne & Ferranti (1975)’ 
who solved the system of equations ( 5 )  and (6) numerically without introducing the 
hypothesis of a thin thermal boundary layer; these authors used the equilibrium 
pressure-temperature re1ationship.t The numerical results of Dalle Donne & Ferranti 
are compared with the results of the approximations in figures 1-3 for a range of 
ambient pressures and superheats. In  these figures the continuous lines show the 
results obtained from (5) and (19)$ and the open circles show Dalle Donne & Ferranti’s 
values; the broken lines will be discussed below. The numbers labelling the curves refer 
to table 1, which gives the physical conditions for the various examples. The most 
stringent comparisons are those between the growth velocities (figure 1) and the surface 
temperatures (figure 2), rather than that between the radii (figure 3). Figure l (a)  
shows the growth velocities of bubbles at an ambient pressure of p ,  = l a tm 
(Tb = 1155 OK) for liquid-sodium superheats of 279, 133 and 22 OK. The comparison is 
quite good except in the early stages of growth, where the slightly different initial 
conditions used in the present work result in some discrepancies which, however, have 
no consequences for the later behaviour. Figure 3 (a) confirms this observation. 

t It should be pointed out that equation (24) of the paper by Dalle Donne I% Ferranti (1975), 
which corresponds to our equation (8), is incorrect in that the latent heat is within the time- 
derivative operator, and further because the expansion work and surface energy are improperly 
introduced (see, for example, Hsieh 1965). In addition, instead of separating the liquid thermal 
conductivity and the pc  factor in the energy equation, they use the same form as our equation (6),  
with the thermal diffusivity taken to be a function of the local temperature. While the alteration 
of the boundary condition (8) is certainly of negligible importance in view of the smallness of 
the terms improperly introduced, the error in the energy equation may be somewhat more 
significant, although it is not expected to alter their results substantially. 

$ Details of the numerical method used to obtain the results will be made available elsewhere. 
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FIGURE I .  Growth rates of vapour bubbles in superheated sodium. The continuous lines have been 
obtained from ( 5 )  and (19) and the dashed lines from (24).  Only the continuous line isshown where 
the two coincide. The numbers labelling the curves refer to table 1, which gives the physical 
conditions for the examples shown. The open circles are the results of Dalle Donne & Ferranti 
( 1975). 

Figure 1 (b) represents the results for a case of very high superheat ( p ,  = 0-5atm, 
AT = 340 OK), a case of moderate superheat (p ,  = 2 atm, AT = 90 OK) and two cases 
of small superheat (pw  = 4.5 atm, AT = 15 OK and p ,  = 6 atm, AT = 5 OK). While 
the cases of high and moderate superheat follow the behaviour encountered in the 
previous cases, the examples with low superheat, and especially the second one, show 
a poorer agreement: the assumption of small SIR (large Jakob number) is not valid for 
these bubbles and other terms in the solution of (13) become important. Much the 
same trend is observed in the surface temperature behaviour (figure 2).  It should be 
remarked that the rapid increase in the value of SIR (see table 1) is brought about more 
by the increase in pv with temperature than by the decrease in AT. Finally we remark 
that the data of Dalle Donne & Ferranti indicated in figures 1-3 have been obtained 
from copies of their original figures: this circumstance explains the occasional scatter 
in their points which appears in our figures. 
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2. Bubble surface temperatures during growth in superheated sodium. The continuous 
lines have been obtained from c5) and (19) andtlle dashed lines from (24). The numbers labelling 
the curves refer to table 1, which gives the physical conditions for the examples shown. The open 
circles are the results of Dalle Donne & Ferranti (1975). 

We now proceed to obtain an approximate scaling law for bubble growth of general 
applicability. To this end we make some approximations as follows. First we shall 
take L and pv to  be independent of temperature and we shall evaluate them at the 
boiling temperature T,. This choice, rather than T,, say, will ensure that the last stage 
of bubbIe growth, the thermally controlled stage, will be more correctly described. 
Second, we shall approximate the relation between the equilibrium vapour pressure 
and the temperature by a linear relation (see figure 4): 
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Bubble 

1 
2 
3 
4 
5 
6 
7 

Tb 

(OK) 
1083.6 
1154.6 
1154.6 
1154.6 
1235.2 
1345.9 
1390.2 

AT 
(OK) 

340.1 
278.9 
133.1 
22.1 
90.1 
14.7 
4.66 

Ro 
(cm) 

2.5 x 10-5 
2.5 x 10-5 

1 0 - 4  
10-3 
10-4 

4 x 10-4 
10-3 

P 
1.253 x 
3.212 x lo-‘ 
9.899 x lo-’ 
1.088 x 
2.923 x 
5.619 x lov2 
2.936 x lo-’ 

01 

1.647 x lo7 
1.224 x lo8 
1.655 x lo’ 
5.515 x lo5 
1.642 x lo7 
2.059 x lo6 
5.147 x lo5 

&/R 
(eq. 15) 

4.39 x 10-3 
9.20 x 10-3 

1.77 x 

5.54 x 10-2 
2.63 x 
3-36 x lo-’ 
1.36 

Jakob 
no. 

565.7 
227.7 
108.7 

18.04 
38.08 

2.979 
0.7331 

TABLE 1. Physical conditions and parameters for the examples of bubble growth 
in superheated sodium given in the present study. 

I I 
I I I I - 

FIQURE 4. The solid curve indicates the correct vapour-pressure dependence on temperature. The 
dashed line is the ‘chord approximation ’ of (20). The dash-dot line is the ‘tangent approximation ’ 
to the vapour pressure used by Mikic et al. (1970). 

We remark that by definition p m  = pa(Tb). It is evident that (20) makes it possible to 
combine ( 5 )  and (19) explicitly. We now introduce a dimensionless time variable 

R*(t’) dt’, 
7 = - j  a t  

GO 

where a = [l)v(Tm) -Pm14/WTm)Pt.  (22)  

v = (R/R0)3 (23) 

We also use the normalized bubble volume 

in place of the radius. With these substitutions we obtain the dynamical equation 
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with the initial condition V ( 0 )  = 1 and with the parameter p given by 

All the physical parameters of the problem are contained in p, and should all be 
evaluated at  the temperature Tb except cr, which is evaluated at Tw. 

In  (24) the left-hand side represents the effect of the liquid inertia while on the 
right-hand side the last term gives the effect of surface tension and the second term, 
which is proportional to p, describes the decrease in the internal pressure caused by 
the thermal effect. As long as the growth continues, this term increases monotonically 
from zero, and its effect on the bubble growth process appears sooner the larger the 
value of the parameter p. This parameter decreases with increasing superheat or with 
decreasing ambient pressure. This behaviour is shown in figure 5 for liquid sodium 
and water. Similar curves for a are shown in figure 6. 

Equation (24) has been obtained through the introduction of several simplifying 
assumptions some of which, like (20), may appear rather drastic. It is therefore of 
interest to compare the results obtained from its integration with the ones described 
earlier derived from (5) and (19). This comparison is shown in figure 1 for the growth 
velocity, in figure 2 for the surface temperature and in figure 3 for the radius. The 
results from (24) are indicated by broken lines in these figures except for the cases 
in which they are indistinguishable from those discussed above. The values of the 
relevant parameters p ,  a,  R, and AT are given in table 1 .  The high superheat cases 
( p ,  = 0.5 atm, AT = 340 O K ;  p ,  = 1 atm, AT = 279 OK and AT = 133 OK) all show 
serious discrepancies in the growth rates and in the surface temperature behaviour. 
However, it will be observed that the differences in the radii are much smaller, at  least 
in the range of values (R 5 0.5-1 cm) of practical interest. It should be remarked that 
for larger radii many assumptions of the mathematical model become questionable, 
such as the assumption of spherical symmetry and the neglect of relative translational 
motion between the bubble and the liquid. The case of 90 OK superheat is a particularly 
interesting test of the validity of the approximate equation (24). Here the superheat 
is only moderately large, so that, unlike the high superheat cases, thermal effects 
become significant while the radius is still in the range of practical interest. It is 
observed that, although some discrepancy exists in the growth rate (figure 1 b)  and in 
the surface temperature behsviour (figure 2 a) ,  these differences have a negligible 
effect on the radius. Finally, the low superheat cases all show an excellent agreement 
between the results obtained from (24) and those illustrated earlier. In  summary, we 
may say that, although (24) is not a good approximation to the theory based on (5) and 
(19) for very large superheats, the differences between the two approaches become 
significant in practice only for values of the radius which appear to be of little practical 
interest. Although our results justify this statement only for liquid sodium, we believe 
that its validity is entirely general except perhaps for temperatures and pressures 
near the critical point. The basis for this view is that for very high superheats inertial 
effects dominate most of the portion of bubble growth of practical significance, and it 
is clear from the preceding considerations that these inertial effects are correctly 
accounted for in the present formulation. 

We should also like to comment on the fact that the dashed curves in figures 1 (a )  
and (b)  lie consistently above those obtained from the more accurate theory, a 
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behaviour which shows higher growth rates. This feature is consistent with the 
approximations introduced in order to derive (24) since the evaluation of pv at T, rather 
than at the instantaneous value of T, diminishes the latent-heat requirement. In  
addition, as figure 4 shows, the linear law of pressure variation, equation (20), tends to 
overestimate the bubble internal pressure for a fixed value of T,. 

The limiting behaviour of R(t)  discussed above in $2 is readily obtainable from (24). 
For the initial stages of the growth, in which the integral on the right-hand side can 
be neglected, one integration can readily be performed with the result 

dV 2 

(5) = ' ( d r ) ,  
V-a - + 6 V-*( 1 - 8 V - i ) ,  

dV 

where (d V / d r ) ,  is the initial velocity. If the value of p is so small that (26) still applies 
when V % 1, we have to leading order 

d V / d r  _N 64 V-3, (27) 

which is readily seen to be exactly equivalent to (2). For late times, inertial and surface- 
tension effects become negligible and (24) reduces to 

dV 
d6 

(r-O)-t-dO2: 1, 

which can readily be inverted to give 

d V / d r  N 1/mpr4, 

which, by use of (21), can be seen to coincide with (3). 

5. The scaled growth formulation 
Let us now make the following change of variables in (24): 

?J = p6 v ,  X = p1''f. 
This equation then becomes 

with the initial condition 
Y(0)  = PS* (31) 

The asymptotic behaviours (27) and (28) are readily seen to be independent of p. It is 
clear, therefore, that the effect of the parameter p on the solution of (30) becomes 
negligible as soon as p2y--% 4 1, which, as will be seen below, means in practice an 
order-of-magnitude increase in the bubble radius. The scaling (29) can be referred to 
the physical variables R and t with the definitions 

a = p2R/R0, Z = ap2t. (32) 

From (21) and (23) it is readily seen that these equations imply 

J O  
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FIGURE 7. The scaled growth rate given by (34) is shown as a function of the dimensionless time (32) 
by the solid line. The non-scaled, p-dependent portion of the growth as determined by (30) is 
shown by dashed lines which merge into the general scaled curve. The open circles on the dashed 
lines give the times at which R = lOR,; the open squares give the times at which R = 50R,. 
The numbers refer to the conditions given in table 1.  The dash-dot line is the purely thermally 
controlled growth (35); i.e. n-l(3f)-*. 

and therefore that the relation 
€2 = R(f) (34) 

is independent of the physical parameters a and p except in the initial (and usually 
unimportant) stages of the growth. In  terms of the scaled variables €2 and t the asymp- 
totic relations (2) and (3) are 

inertial thermal 
(35) 

Figure 7 shows a graph of the scaled radial growth velocity d f l l d f  as determined by (30) 
as a function of the scaled time f. The initial, non-scaled stages of the growth are also 
indicated for a range of values of p. The open circles on the curves give the points a t  
which R = 10Ro and the squares the points at  which R = 50Ro. The confluence of all 
the solutions into a single curve is a graphic demonstration of the validity of (34). In 
the figure the thermally controlled growth velocity (35) is also shown. The limited 
applicability of this often-used relation is apparent. 

In  view of the approximations which lead from ( 5 )  and (19) to (24) or (30), it is of 
course of interest to show the results obtained from the complete theory in terms of 
the scaled variables (32) and to compare them with (34). Such a comparison is provided 
in figure 8 for the growth rates and in figure 9 for the radius 21s. time behaviour. Apart 
from the initial stages of the growth, the differences already illustrated in figures 1 
and 3 are of course still present here. In  particular the scaled growth rates for very 
large superheat are seen to deviate considerably from those given by (34). However, 
figure 9 shows that these discrepancies have limited effects on the R(t) results. It may 
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FIGURE 8. The scaled growth rate given by (34) (the solid line) is compared with the accurate 
growth rates given by (5) and (19) (the dashed lines). These accurate growth rates are those given 
in figure 1. The numbers refer to the conditions given in table 1. The dash-dot line shows the 
growth rate determined from (39). 

therefore be concluded that the parameters a and p do include in a physically meaning- 
ful way all the quantities relevant for the growth of vapour bubbles in superheated 
liquids under a very wide range of conditions. Likewise, the scaling (32) and the 
relation (34) embody correctly, although in an approximate way, the characteristics 
of the physical process under consideration. In  the cases of high superheat it may be 
possible to evaluate the physical properties appearing in the parameters p and a a t  
a temperature different from Tb in order to give a better agreement with the more 
complete theory based on (5) and (19). However, it would be difficult to give a simple 
prescription of general applicability, and therefore we have not explored this 
possibility. 

If L and p, are taken to be independent of temperature, it is also possible to write 
the equation for the temperature, equation (19), in terms of scaled variables. It is 
easy to show that 

dY T,-% = (T,-Tb) (x-[)-j-d[.  
J O X  d t  

If we now define a dimensionless temperature as 

Fs = (T, - T,)/(To, - T,), 
Fs = !Fs(f). we obtain from (33) 

A graph of this relation is given in figure 10, where it is compared with the results 
obtained from ( 5 )  and (19). 

It is of interest to compare our results with a simple interpolation expression for 
bubble growth proposed by Mikic et al. (1970). This expression is also written in terms 
of scaled variables R+ and t+ and is given by 

R+ = Q[(t+ + 1)s - (t+)# - 11, (36) 
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FIGURE 9. The scaled radius given by (34) is shown as a function of time by the solid line. The 
bubble radius and the time are made dimensionless according to (32). The dashed lines give the 
accurate ra,dii determined from ( 5 )  and ( 19) ; these accurate radii are also shown in figure 3. The 
numbers refer to the conditions given in table 1. 

where R+ = (A/BZ) R, t+ = (A2/B2) t 

and A =  ( 2 T  -Lb -T ")&) pv B =  ( 1 2 ) *  - -(T,-Tb). k 
3 p dt 7i-D LPV 

I n  their paper Mikic et al. (1970) used the Clausius-Clapeyron relation to evaluate 
dpv/dT at the boiling temperature Tb. With this choice the inertia-controlled portion 
of the growth cannot be described correctly for moderate or large superheats. A sub- 
stantial improvement was suggested by Theofanous & Pate1 (1976), who used an 
approximate linear law [our equation (ZO)] for the evaluation of the derivative, setting 
dpv/dT 1: [pm(Tm) -p,]/(T, - Tb). Following this procedure and evaluating the 
physical properties appearing in (38) a t  the boiling temperature, one can readily show 
that the scaling (37) is identical with our equation (32) . t  I n  terms of the variables 
defined by (32)) equation (36) becomes 

R = (2/+) ($)& [(*7?tl+ 1)9- ( * n 2 f ) % -  11. (39) 

t Notice that the quantities pu"/Ro and ap2 appearing in (32) are independent of surface 
tension provided that this quantity is consistently evaluated at the initial temperature T,. 
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FIGURE 10. The scaled temperature at the bubble boundary is shown as a function of the dimension- 
less time by the solid line. The accurate temperatures determined from (5) and (19) are shown by 
the dashed lines. These accurate temperakures are also shown in figure 2. The numbers refer to 
the conditions given in table 1. 

The growth rate predicted by this equation is also illustrated in figure 8, which shows 
(36) or (39) to be an acceptable interpolation between the inertia-controlled and the 
asymptotic stages. The radius-time behaviour given by (39) follows quite closely the 
full line on figure 9, and is not shown for clarity. In  view of the rather unsatisfactory 
physical basis on which (36) and (39) have been obtained, the close agreement with 
the more precise theory is rather surprising. Nevertheless, the possibility of describing 
vapour-bubble growth by means of this interpolation, even though approximate) is 
useful . 

Both (34) and (39) apply only for bubbles that have grown at  least an order of 
magnitude from their initial size. It may therefore be of value to be able to estimate 
the time from which they begin to be valid. To this end we show in figure 1 1  a graph 
of the time needed to attain the sizes 10Ro, 20R0, 50R, and 100Ro as a function of the 
parameter p. The initial conditions for the continuous lines are R(0)  = R, and 
dR(O)/d t  = 0.04aR0. The broken line and the dash-dot line have been obtained from 
the same R(O), but with initial velocities an order of magnitude greater and smaller 
than the value just given. The small influence of the initial condition is clear from 
this figure. 

As a final point we should like to show that it is possible to define a more general 
scaling for bubble growth which is capable of accounting also for the surface-tension- 
dominated latency stage. This more general scaling, however, is less useful than the 
one considered above. 

It is easy to show that, if the difference pv(E) -pm is kept constant in ( 5 ) ,  as 
is approximately correct during the latency stage, one can obtain a first integral 
analogous to (26), namely 

3 Ro 1 - (Ro/R)2 
[ 1 - ( 2 ) 3 ] [ 1 - 2 B  l - ( R , / R y  
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FIGURE 11. The times required for growth to the values o f R / R ,  indicated are shown as a function 
of p. The time is scaled according to (41 ) .  The solid lines correspond to the initial conditions 
R = R, and dR/d t  = 0.04aRO. The dashed lines and the dash-dot lines correspond to initial 
conditions R = R, and dR/d t  = 0.O04uR0 and dR/d t  = O.40uRO, respectively. 

Here (dR/dt), is the initial velocity which upsets the unstable equilibrium at the initial 
radius, and ( 1 )  has been used to eliminate the surface-tension parameter.t Now it is 
obvious that, for fixed (dR/dt),/(aR,,), (40) admits the scaling 

R, = R/R,, t ,  = at, (41) 

with a defined by (22). We note that, although the scaling (41) ie different from (32), 
one has R,/t, = Rff ,  so that a relation of the type 

dR/& = f ( R / i )  (42 ) 

describes the bubble behaviour both in the latency stage (in which T, - T,) and in the 
successive stages of growth. Although in principle (42) contains all the information 
needed for the description of the process, it is clear that a graphical presentation of it 
would be of limited practical value. 

This study is a portion of a programme supported by the National Science Founda- 
tion under Grant ENG 75-22676. One of us (AP) wishes to thank the Gruppo Nazionale 
per la Fisica Matematica del Consiglio Nazionale delle Ricerche for partial support 
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